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ABSTRACT

Decreased hardware costs will facilitate the use of parallel
computation in the near future. Synchronization primitives will be

needed to implement concurrent algorithms. Many such primitives have
been proposed to date. Unfortunately, their power can only be
accurately measured in terms of their ability to solve a particular set
of synchronization problems. A correspondingly large number of such
problems have been proposed along with the primitives. We present some
of these synchronization problems and outline their parameters,
variations and histories.

INTRODUCTION

The past fifteen years have witnessed a tremendous shift in the

factors that contribute to the eost of computation. Whereas hardware

was at one time the dominant factor, it is software development and

maintenance that now overwhelmingly influence the price of computing.

The decline in the cost of hardware, both in relative and absolute

terms, has made feasible the application of multiple processing units to

a single program as a technique for speeding up the execution of that

program. The trend toward parallel computation is likely to increase as

VLSI circuit technology lowers the cost of computing systems even

further, and as the physical limits on the speed of a single processor

are approached.

Concurrent computation is not without its difficulties. People

seem best suited to solving problems in a sequential fashion, and the

use of von Neumann-style machines since the 1940's has inculcated us

with the idea that programs must also run sequentially. One of the

primary problems with implementing parallel algorithms on an

asynchronous computer is the need for synchronization. Processes must
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cooperate if they are to maintain the integrity of globally accessible

data. In addition, cooperation implies the ned for interprocess

comunication, which in turn necessitates a synchronizing mechanism that

enables messages to be handled properly. One notion of why

synchronization may be difficult to achieve is described by Parnas and

Siewiorek IPS751.

Literally dozens of synchronization primitives have been studied

since the difficulties inherent to parallel computation were first

discovered. (A very nice overview of the history of problems and

mechanisms related to concurrency has been presented by Brinch Hansen

[BH79].) The "power" of a such primitives (by whatever metric

synchronization performance can be measured) can only be determined

relative to their ability to solve a particular class of problems. One

plausible notion of the power of a synchronization primitive is due to

Lipton [Lip73], [Lip74]: primitive A is more powerful than primitive B

with respect to some problem if A can solve the problem while B cannot.

Further research along these lines has been pursued by Lipton, Snyder

and Zalcstein JLSZ74], [LSZ75], Dolev [Dol79], and Henderson and

Zalcstein [HZ80].

When introducing a new primitive, a researcher will invariably

describe how it can applied to some select set of problems. In a

display of modesty, he may even explain why the solution to some

problems lies beyond the scope of his synchronization mechanism, or why

it suffers from some other undesirable characteristic (such as

inefficiency stemming from busy-waiting). Not surprisingly, the

invention of many synchronization primitives has led to the development
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of correspondingly large set of synchronization problems. It is

important for computer scientists to appreciate and understand some of

these problems if they are to have a basis for judging the capabilities

of the new synchronization schemes that are sure to be proposed over the

coming years.

EXAMPLES OF SYNCHRONIZATION PROBLEMS

In this section we examine numerous synchronization problems and

their variations. These problems have several sources of origin. As

mentioned above, some were developed to prove or refute the efficacy

and/or efficiency of a particular synchronization mechanism. Some are

problems that might be encountered when designing an actual

multiprocessing system. And between these two extremes of "toy" vs.

"real-world" problems, we find some problems that bridge the gap: they

have been distilled from actual problems through the removal of

low-level details so that the result will more readily succumb to

rigorous analysis.

The difficulties associated with developing precise specifications

for these problems has been studied by 1.zaja [Cza79J, who has also

examined some critical implementation issues [Cza78]. In addition to

those listed below, a number of other problems arising from memory

management in operating systems can be found in [Hoa73]

CAI
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Mutual Exclusion

1. No Restrictions. The most elementary version of this problem is

simply stated. Every process has a portion of code known as the

critical region or critical section. The processes execute in parallel,

though a process is forbidden from entering its critical section if any

other process is in the midst of executing its respective critical

section. Mutual exclusion is generally needed to prevent more than one

process from simultaneously accessing some resource if the

characteristics of the resource deem such multiple accesses meaningless.

For example, if two or more processes were to attempt to store different

values into the same memory location or to utilize the same printer at

the same time, the result would most likely be gibberish. Dijkstra

[DiJ65], (Dij68a] was the first to examine mutual exclusion as well as

to develop instruction protocols and primitive mechanisms with which to

implement it. (As an aside, we note that Dijkstra's PV semaphore

operations are not merely of theoretical interest; they have in fact

found application in the construction of the Venus (Lis72] and Boss 2

[Lau75] operating systems.)

I

2. Bounded Number Exclusion. This version of the problem is exactly

the same as the previous version, but we relax our requirements slightly

to allow as many as k processes to execute their critical sections

simultaneously. The value of k is finite and fixed.

would be vacuously correct if the introduction of synchronization
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protocols caused all the processes to cease doing productive work. At

the very least, we would want any solution to a synchronization problem

to be deadlock-free, i.e. there is always one process which continues

to make progress through its critical region. Though all mutual

exclusion schemes in the literature implicitly satisfy this requirement,

it was not stated explicitly until Burns et al. [BFJLP78] determined

the limits of the size of inter-process messages used by exclusion

mechanisms satisfying, among other properties, deadlock-freeness.

4. Lockout-free Exclusion. Dijkstra's [DiJ65] original algorithm

contained a subtle but important flaw. Though it would perform as

specified, it permitted some processes to compete unfairly for the use

of its critical section. In particular, if a set of processes were in

contention for exclusive access to some resource, it would be possible

for some of these processes to enter, leave and reenter their respective

sections before the remaining processes could ever begin executing their

own critical sections. Continuing in this mannner, some of the

processes would never be granted access to the resource. These

processes are said to suffer from lockout, starvation, or livelock.

Freedom from lockout implies freedom from deadlock.

Knuth [Knu66] was the first to recognize the difficulties caused by

lockout and to offer a solution that avoids it altogether. To prevent

lockout, we must guarantee that each process contending for access to

the critical section will eventually be granted that right. The delay

time between requesting and gaining entry to the critical section is

therefore finite, though it need not be bounded. Two other schemes that

provide freedom from lockout have been developed by Kessels and Martin

______I.
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1KM79] and by Morris [Mor79]. A weak primitive that allows fair

exclusion (or can alternatively be used to allow an unbounded number of

processes to leave or enter the system) has been proposed by Goodman

[Goo76].

5. Bounded Waiting. The time a process waits between requesting access

to its critical section and receiving that right is bounded by some

fixed constant k. It would be difficult, if not impossible, to make k

some absolute measure, such as the number of seconds passing on a clock.

The reason f or this is simple; since we are dealing with totally

asynchronous systems, we cannot know (by definition of such systems)

precisely how long it will take any process to execute any instruction

at any moment, other than it will be a finite amount of time. As a

result, we cannot know how long a process will occupy its critical

section, other than this too must be a finite time span. If k were

bounded even though the occupancy time of a critical section were not

(as is the case here), then a situation could arise wherein process A

has waited the full k seconds to enter its critical section while

process B is still in its critical section and is not yet ready to yield

its exclusive occupancy of that region. If the bound k is to be

respected, then A must also begin executing instructions in its critical

section at the same time as B, a clear violation of mutual exclusion.

More commonly, k will be a relative measure of passing events. A

frequent definition used for k is the maximum number of times each of

the processes (other than the one waiting to execute its critical

section) may enter and leave its own section before the process in

question is finally granted the access it desires. Whatever metric is

1. .. .. ."
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chosen for k, it must be such that no two processes could reach and

exceed it at the same time. For if this were to happen, both processes

would simultaneously be required to enter their critical sections, and

the most basic constraint of mutual exclusion would be violated.

Knuth's lockout-free scheme did in fact provide for bounded waiting, and

the bound established in his paper was subsequently lowered by DeBruijn

[DeB67J and by Eisenberg and McGuire (EM72]. A more recent proposal by

Elgot and Miller [ElM79] achieves a very tight bound by having the right

to enter the critical section passed among the processes in a

round-robin fashion.

6. Generalized Fair Exclusion. We have a set P (PoPIo..Pm} of

processes. Each process in this set spends a possibly infinite amount

of time thinking followed by a finite period of eating, and this

protocol is repeated an indeterminate number of times. We also have a

set S - {So,S ,...,Sn} , where each Si, 0 < i < n, is a subset of P.

These subsets define the exclusion constraints. If (Pb'Pc,'*'Pz} is

the set of processes that are currently eating (initially this set if

empty), then another process P can stop thinking and begin eating onlya

if {PaPb,"'P zI is a subset of some Si, 0 < i < n. To prevent trivial

cases of lockout, we assume that every process P is an element of at

least one subset SI.

Lockout is nevertheless possible under such a scheme. Consider the

problem described by the set of five processes P =(POPP1,P2,P3 ,P4} and

the set S - {(PoP 2}, {PooP 3}, (Plop 3 1, {Pl,P 4}, {P2,P4}}. These

parameters define the five dining philosophers problem. In a later

section, we show that this problem may subject processes to starvation.
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Dijkstra (Dij72a] was instrumental in developing this problem and

in establishing criteria needed to prevent starvation. A process that

wishes to eat is said to be "hungry," and a hungry process that cannot

be serviced immediately will sleep until the time comes when it can eat.

Two properties are then necessary and sufficient to guarantee no

starvation:

1) If a process is sleeping then some other process must be eating or is

about to resume thinking.

2) If process Pi is hungry, then permission to eat cannot be granted to

other processes more than Ni times before Pi itself is allowed to

eat, where Ni is a predetermined constant that serves as an upper

bound for Pi"

These two properties clearly induce a modified form of bounded waiting

on the system. Devillers and Lauer [DL761 have since developed a

general mechanism for solving this problem.

7. First-In-First-Out (FIFO) Scheduling. Processes enter their

critical sections in the same order in which they requested access to

it, thereby making this an even stronger condition than bounded waiting.

FIFO scheduling is, in one sense, the "fairest" of all scheduling

policies, for the worst case waiting time of any individual process is

minimized. Katseff [Kat78] was the first tc develop protocols for

implementing this type of mutual exclusion.

8. Last-In-First-Out (LIFO) Scheduling. Processes enter their critical

sections in the reverse order from the way in which they requested

access to it. Such a scheduling policy leaves open the possibility of
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lockout in the following circumstance: process A is in its critical

section while processes B and C are awaiting entry to their critical

sections. B will be granted priority over C, since C began waiting

before B. Process A leaves its critical section, and B enters its own

critical section. Before B releases exclusive possession of its

critical section, A makes a request to reenter its own section. Since

this request certainly comes after the request of C, A will have

priority over C. Now tfe situation is exactly as it was in the

beginning, with only the roles of A and B reversed. As long as these

two processes continue to swap control of the critical section in this

fashion, C will never gain the right to enter its critical section, and

would therefore suffer from lockout.

9. Arbitrary Exclusion and SchedulIng. Lamport (Lam76l developed this

problem to illustrate the use of one plausible synchronization mechanism

that might be used in a distributed, fault-tolerant system. (Lamport

first examined mutual exclusion in a distributed environment several

years earlier [Lam74].) When process A signals its intent to enter a

critical section, it chooses and is assigned a mode value MA that cannot

be altered until the critical section has been successfully executed.

There is a symmetric binary predicate conflict on the set of mode values

that may not change over time. There is also a predicate should-precede

which is very flexible; given two processes and an arbitrary assortment

of other (possibly time-dependent) data, it determines which of these

two processes should have precedence over the other when both are

waiting to access their respective critical sections.
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One restriction is placed on the nature of should-precede. The

arguments to the function may not change value while the function is

being evaluated. This constraint makes impossible the existence of a

function that cannot return an answer before the values of its operands

become obsolete. A strongly constant function (as Lamport terms a

function which obeys this restriction) will not cause race or other

ill-defined situations.

A process A that has mode value MA and that is waiting to enter its

critical section will be allowed to proceed providing three conditions

are satisfied:

1) There is no process B presently executing its critical section such

that B has mode value MB and conflict(MA,MB) = true;

2) There is no process B that is also waiting to access its critical

section and that has mode value MB, where conflict(MA,MB) true and

should-precede(B,A) = true; and

3) Of all the processes awaiting access to their critical sections that

satisfy the first two conditions, process A has been waiting the

longest.

The tremendous power provided by the conflict and should-precede

functions enable us to simulate any of previous eight versions of the

mutual exclusion problem. In fact, virtually every imaginable variation

of mutual exclusion could be described in terms of this problem. Of

course, with all this flexibility, we also run the risk of

underspecifying the functions. If this were to happen, deadlock,

lockout or almost any other unwanted system behavior could develop.

Ford [For78] has shown that by sacrificing a small measure of this
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flexibility, efficient solutions to mutual exclusion and related

readers/writers problems can be obtained. Similar, though more

constrained, results can be achieved using PVchunk [VvL72] or pe/ve

[Age77] instructions.

The concept of mutual exclusion appears to be so essential to any

form of synchronization that it is referred to, either implicitly or

explicitly, in virtually every paper dealing with this subject. While

the need for critical regions can be directly attributed to Dijkstra,

the idea of using special instructions to regulate parallelism can be

traced at least back to the fork/join [Con63, And65] and

do-together/hold [Op165] operations. Other early devices to control

simultaneous resource access include lock/unlock [DVH66] and count

matrices [VH66]. Some of the theoretical aspects that govern solutions

to mutual exclusion problems are discussed by Gilbert and Chandler

[GC721, along with a technique for synthesizing solutions to problems

based on the states of individual processes. In addition, a large class

of high level language constructs, such as enclosures [DD76], have been

proposed to aid the programmer's task of specifying the exclusion

constraints.

Readers/Writers

The readers/writers problem and two of its variants (reader

priority, writer priority) were developed by Courtois, Heymans and

Parnas [CHP7I] to illustrate the flexibility of Dijkstra's semaphore

primitives for solving various exclusion and scheduling problems.

Inadvertently, they may also have shown just how impractical P and V can

_____ ____ ____ __ 1
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be when dealing with non-trivial problems. Their code is complex and

difficult to understand; the thought of deriving solutions to similar

or more involved problems is mind-boggling.

Some resource is accessed by a set of processes. These processes

are categorized in one of two ways: either as a reader or as a writer.

Readers examine the state of the resource but make no attempt to alter

it. Since a reader preserves the integrity of this state, any number of

readers can access the resource concurrently and each will interpret the

state of the resource correctly. Writers, on the other hand, do modify

the resource in some manner. If a reader were to examine the resource

at the same time a writer were changing it, the reader might see part of

the old state and part of the new state (plus any intermediate states).

Since the outcome of such a read would be incorrect (or even

meaningless), the operation of a reader and a writer must be mutually

exclusive events. If two writers attempt to modify the resource

simultaneously, the result is not likely to be the target state of one

writer or the other writer, but a combination of the two (i.e.

gibberish). Consequently, writers must exclude other writers when

altering the state of the resource.

1. Reader Priority. Readers have absolute priority to use the

resource. If a read request is made and a writer is not currently

active, the reader is serviced immediately. If a writer is active, then

all pending readers are granted access to the resource as soon as the

writer has finished. A writer can become active only if there are no

readers either pending or active and there are no other writers

currently active. Clearly, the rapid and continuous arrival of read
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requests could cause writers to be locked out indefinitely. In fact,

since no ordering is placed upon the pending writers, a policy of

servicing writers after a bounded interval of time will not prevent

individual writers from suffering lockout.

2. Writer Priority. The above-mentioned priority is reversed. A

writer may access the resource providing no other process (reader or

writer) is in the midst of doing the same. Only when no writers are

either pending or being serviced will all the readers be granted the

opportunity to perform their function.

3. First-Come-First-Served (FCFS) Scheduling. Reader priority

(respectively, writer priority) scheduling will permit individual

processes to be locked out, since the rapid arrival of readers

(respectively, writers) will prevent long waiting writers (respectively,

readers) from gaining access to the resource. To avoid lockout, we

could simply service processes in the same order in which they request

access to the resource and without regard to the type of process. A

writer gains access to the resource after all the processes which have

been waiting for a longer period of time are through examining or

modifying the resource. A reader may be serviced if no other process

has been waiting longer than it has and a writer is not currently in

control of the resource (though other readers may be). Lockout is

avoided using this scheme, though throughput suffers a decrease since

readers will back up behind writers that have been waiting longer, even

if other readers are presently accessing the resource.
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4. Fair Readers Scheduling. Hoare [Hoa74] described this scheduling

technique, which prevents lockout and gives readers some measure of

priority over writers. If a read request is made while no write

requests are either pending or active, then the read is serviced

immediately. If, on the other hand, some writers are pending or active

when the read is requested, then one of these writers must be fully

serviced before the reader can access the resource. When a writer

finishes, all pending readers are granted access to the resource. Among

only the writers, requests are serviced on the basis of first-come-

first-served.

5. Structured and Dynamic Resources. The readers/writers problem takes

on an entirely new dimension if the resource is "structured," i.e. it

has many interrelated components, each of which may or may not be

accessed concurrently. The problem is further complicated if this

structure can be altered over a period of time. Synchronization schemes

for tree-shaped resources are described in [BS77], [BN78], [MS78],

[Com79], (E11791 and [KuL79]. Owicki [Owi77] has developed techniques

for verifying parallel access to complex resources, such as buffers and

queues. Even more elaborate structures can be manipulated by the

methods of Kung and Robinson [KuR79]. Generalizing this problem

completely, the resource changes in nature from data stucture to data

base. Ullman [U1180, chapter 10] outlines the difficulties associated

with multiple processes t' at are simultaneously attempting to access a

dynamically changing data base.
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Readers/writers has been one of the most intensely studied

synchronization problems. The literature that makes reference to it is

vast. Brinch Hansen [BH72a] contrasts solutions based on semaphores and

conditional critical regions, and his conclusions are debated back and

forth in [CHP72] and [BH73a]. The application of various P/S semaphore

primitives to a variety of readers/writers problems has been surveyed by

Presser (Pre75]. Additional solutions have been developed over the

years, utilizing such varied synchronization schemes as PVchunk [VvL72],

PVgeneral (Cer72], up/down [Wod721, conditional critical regions and

await statements [BH72b], conditional critical regions with priority

[Pet75], sets of interacting processes [New75J, pe/ve [Age77], a

conditional wait variation of monitors [Kes77a], P* (Con77] (which is

corrected and modified in [SJ781), capability managers [KS78J,

distributed processes [BH781, guarded regions [BHS78], flow expressions

[Sha78], sentinels (Kel78], predicate path expressions [An79] and

serializers [HA79].

A host of issues related to readers/writers have been detailed in

the literature. Included among these issues are:

1) deadlock detection and recovery [BN761;

2) efficiency [Sch76];

3) simultaneous reading and writing [Lam77b];

4) allowing writers to read as well as write, as in the "secure

readers/writers problem" described and solved (using eventcounts and

sequencers) by Reed and Kanodia [RK79];

5) formal semantics [Gre75] and specification [Gre77];

6) non-procedural sarlutions (Kes77b];

7) hardware design (e.g. a method for implementing lock/unlock
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instructions using a read/interlock protocol is presented in

[Hil73]); and

8) verification techniques designed to utilize the properties of Petri

nets (Kel761, PV operations [Lev72I and programs employing no special

synchronizing device other than exclusive memory access [Bab79].

Producer/Consumer

When two processes A and B execute in parallel with some joint

goal, they will undoubtedly have to share information at some point. A

situation may arise wherein A is ready to receive information from B

before B has produced it. Dijkstra [DiJ68b] was among the first to

describe and implement a solution to this problem in the "THE"

multiprogramming operating system; other aspects of the problem are

discussed by Habermann [Hab72a] and by Brinch Hansen [BH73b]. The

development of synchronization mechanisms which allow communicating

processes to overcome the difficulties inherent to this situation is

known as the producer/consumer problem. Process B, which will

eventually create the message, is the producer, and process A, which

will receive the message, is the consumer.

One technique that is frequently used to implement interprocess

communication is the establishment of a buffer in a global portion of

memory. The buffer has a role analogous to that of a mailbox: the

producer leaves messages in the buffer, where they remain until the

consumer is ready to examine them. Since the size of a buffer is likely

to be specified at system generation time, we will probably not have the

option of dynamically increasing this size as more messages arrive.
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(Nor would we necessarily want to expand the buffer. Presumably, after

the consumer has processed awaiting messages, the content of these

messages becomes obsolete, and the space they occupy can be made

available to store heretofore undelivered messages.) Fixed buffer size

adds a new constraint to the problem. Not only must the consumer wait

if messages are not available for it, but now the producer must wait

before storing new messages in the mailbox if the box is already full of

information that has not yet been examined by a consumer. Difficulties

of this nature are likely to arise when message passing protocols are

used as the basis of programming languages, such as PLITS [Fel79], or as

the basis of operating systems, such as those employed by the

Regnecentralen 4000 [BH70] and CDC 6600 [Gai72] computers. Several

variations of this problem have been studied in the literature, and they

are outlined below.

1. Single Slot Mailbox. The mailbox has room for a single message.

Producers and consumers must therefore alternate accessing the buffer.

Since we would not want a consumer to examine a message before it has

been completely written by a producer, and since we would not want a new

message to be written before the old message has been thoroughly

examined by the consumer, a process (be it producer or consumer) must

have exclusive control of the resource. Clearly, the producer/consumer

problem will assume many of the characteristics of the readers/writers

problem. This highly restrictive version of the problem was first

mentioned by Habermann [Hab72aj and was later used by Campbell and

Habermann [CH74] to demonstrate one application of path expressions.

_ _ _ -
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2. Bounded Buffer (Multiple Slot Mailbox). This problem is identical

to the one described above, though the size of the buffer is increased

to allow more than one message to reside in it at any time. Typically,

a circular buffer would serve as the mailbox, with pointers indicating

the bounds of the non-obsolete messages. Hoare described this problem

along with a solution based upon the monitor concept [Hoa74] and again

with a solution based upon the concept of communicating sequential

processes [Hoa78]. Methods of synthesizing solutions to the bounded

buffer problem have developed by Lavenberg [Lav78] and van Lamsweerde

and Sintzoff [vLS79], the latter of which places heavy emphasis on ideas

for avoiding deadlock and starvation.

3. Parallel Bounded Buffer. When moving from the single to multiple

slot mailbox versions of the producer/consumer problem, we preserve the

constraint that prevents two or more processes from accessing the

resource concurrently. In the second version of the problem, this

constraint becomes unnecessarily strong, since we only wish to avoid the

possibility of multiple processes accessing the same portion of the

buffer at the same time. In our new variation of the problem, processes

may deposit or remove messages in parallel, providing each process is

treating a unique message. Habermann [Hab72a], Owicki and Gries

(O76a], Lamport [Lam77a] and Yonezawa [Yon77] use this problem to

illustrate their ideas on program verification.

4. Information Streams. Dijkstra (DiJ72b] invented and solved this

modification of the bounded buffer problem. Additional solutions were

developed by Cooprider et al. [CHCP74] and by Kessels [Kes77a]. There
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is a collection of pairs of producers and consumers. Each pair i is

coupled via an information stream of n messages. All messages are the

same length, and all the messages must be stored in a buffer having size

tot. As in the other versions of this problem, we wish to synchronize

the producers and consumers so that at any time 0 < ni for all i and

Zi ni ( tot.

Further constraints are placed on the problem. If a consumer is

unable to continue its function for lack of waiting messages, it must be

allowed to sleep until new messages become available. If the sleeping

consumers are then reawakened in some even-handed fashion (such as FIFO

ordering), a slow consumer has the opportunity to retard all the other

consumers to its speed. Still worse is the consumer that has stopped.

Since its information stream may occupy the entire buffer, all other

streams are blocked. The additional constraints on the problem would

prevent such inefficiencies from occurring.

The producer/consumer problem nearly rivals the readers/writers

problems in terms of the amount of attention it has received in the

literature. Early references to producer/consumer-like problems

included solutions utilizing ports [Wal72] and block/wakeup [Sa1661.

(This latter paper was extended in (Lam68l to allow priority

scheduling.) Solutions based on different semaphore operations are

examined by Presser [Pre75]. Much more recently, a system called "COSY"

has been devised to solve a wide variety of producer/consumer problems

[LTS79I. Other mechanisms include conditional critical regions with

await statements [BH72b], regular expressions [Sc76], Modula signals

[Wir77a, Wir77b], distributed processes [BH78], communicating sequential

_____________. ....________
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processes [Hoa78], eventcounts and sequencers [RK791, flow expressions

[Sha78I, sentinels [Ke1781 and synchronizing resources (And79].

Other topics related to this problem have been studied by

researchers. A few of these topics are:

1) operation in a real-time environment [Wir77c];

2) permitting a process to produce or consume a variable number of

messages at one time [VvL72]; and

3) verification methodologies, such as the scheme developed by Howard

[How76b] for use with monitors.

Joint Checking Account

The joint checking account problem was developed by Howard [How76a]

to demonstrate the relative capabilities of various signaling protocols

for monitors. A bank account is shared among a number of people (in his

examples, Howard uses just two people: a husband and wife). Any person

may access the account by using the operations deposit(k) and

withdraw(k). The first of these operations causes the balance in the

account, B, to be increased by k dollars. The second operation has

precisely the opposite effect: it decrements B by k.

There are two further restrictions on the sum we may maintain in

the bank at any time. It may never fall below zero, and it may never

rise above some predetermined upper bound M (presumably the FDIC will

not insure amounts greater than M). To insure these conditions are

never violated, we might only permit a withdraw(k) operation to be

serviced if k < B. Going in the opposite direction, a request to
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deposit(k) might be serviced only if k < M-B. Any operation which

cannot be serviced will be left pending until the condition upon which

it is predicated becomes true.

In fact, we will extend the conditions of servicability to permit

single transactions of greater than M dollars. Assume operations

withdraw(w1), withdraw(w2 ), ... , withdraw(w) and deposit(d),

deposit(d2 ), ..., deposit(d b ) are pending. They all become eligible for

servicing if 0 < (dl+d2+...+db)-(wl+w 2+...+wa) < M-B. Of course, the

mechanism which implements this procedure would need to break down and

splice back together the individual operations in such a fashion so as

to prevent B from dropping below 0 or from rising above M.

To see that lockout is possible under this arrangement, consider

the following example. The account is initially empty, so B-O. A

request to withdraw 10 dollars is made, but must remain pending until B

> 10. Next, a deposit(5) operation is initiated and serviced, so B

rises to 5. Following that, a withdraw(5) operation is initiated, and

it too is serviced to completion, reducing B to 0. We are then back at

the initial state, and the withdraw(10) operation still must remain

pending. If small deposits and withdrawals continue to alternate in

this fashion, the larger withdrawal can never be serviced, even though

it has been waiting longer than any other request.

Without too much difficulty, we could dream up a scheduling policy

that implements the following idea. The longer a withdraw

(respectively, deposit) request cannot be serviced, the more deposit

(respectively, withdraw) requests will be left pending, until this

withdrawal (respectively, deposit) and the deposits (respectively,
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withdrawals) all become serviceable (even if some of the deposits

(respectively, withdrawals) can be serviced at an earlier time).

Assuming a fairly regular mix of operations (imagine what would happen

if, contrary to this assumption, deposits greatly outnumbered

withdrawals, or vice versa), no one operation will be locked out

forever. The throughput of the system will suffer as a result of

detaining operations which are eligible for servicing.

Five Dining Philosphers

This problem was developed by Dijkstra [Dij7l]. It was used soon

thereafter in a discussion of synchronization problems written by Hoare

[Hoa72], who used it again later to illustrate one application of

communicating sequential processes [Hoa78]. Five philosophers

{Philosopher0 , Philospherl, ... , Philosopher4} sit around a table. In

front of each of them lies a plate full of spaghetti, and to the right

of each plate lies a fork (i.e. for each i, 0 < i < 4, Forki is by the

right arm of Philospheri). This arrangement is shown in Figure 1.

Each philospher divides his time between thinking and eating.

Unfortunately, because the spaghetti is very tangled, a philospher will

need the use of the two closest forks in order to eat (i.e.

Philosopher i must have Forki and Fork(i-1 ) mod 5 before he can begin

eating). Only one philospher can be using a particular fork at any

time. When a philospher finishes eating and resumes thinking, he

replaces his two forks back on the table so that they will be available

in the future when he or others may need them.
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Philosopher
0

Philosopher1 0 Philosopher 4* 0Fork, Pork4  %

.Fork 1  Fork 3

0 Fork 2 0

Philosopher 2  Philosopher 3

Figure 1: Five Dining Philosophers

The crux of this problem is making sure that Philospheri never

grabs Forki unless he is also sure that he can grab Fork(i1 ) mod V

Assume Philospheri were to grab Forki, and before he could also pick up

Fork(i-1 ) mod 5' Philospher (i-1) mod 5 were to grab it. Philosopheri

would then be left holding Forki but would be unable to eat with it.

Assume too that Fork(i+1) mod 5 were lying on the table and that

Philospher(i+I) mod 5 wanted to eat. He would be prevented from doing

so because Forki is unavailable, even though Philosopheri is not using

it productively. Thus Philospher(i+l) mod 5 would be unable to proceed,

and quite unnecessarily; the overall result is a decrease is system

throughput.

Even worse situations than the one described above are possible.

Assume that each Philosopher1 has grabbed Forki . Every philosopher
gi

gained control of exactly one fork before any philospher could gain
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control of two. Now every philosopher has a fork that another

philospher needs, and since no one of the men can proceed, the forks

needed by others are never released. The system is therefore

deadlocked, and productivity drops to zero.

Of course, even if these problems are remedied, there remains a

possibility of lockout. Suppose that Philosopher(i-1) mod 5 is eating,

and before he finishes, Philosopher(i+l) mod 5 also begins to eat. In

additon, suppose that before the latter philosopher finishes eating, the

former resumes attending to his plate of spaghetti. If these two

philosphers continually alternate eating in this fashion, one or both of

Fork(i-l) mod 5 and Fork i will be in use at all times. Since the two

forks that Philosopher i needs will never be available simultaneously, he

is forever prevented from eating, and he will suffer, quite literally,

from starvation. One strategy for preventing this occurrence is

developed by Courtois and Georges [CG77]. A paradigm for proving the

correctness of solutions has been outlined by Owicki and Gries [OG76bJ.

Cigarette Smokers

The cigarette smokers problem centers around the distribution of

three resources: tobacco (abbreviated by "T"), paper ("P") and matches

("M"). There are three agents, each of whom possesses two of the

resources, and no two agents possess the same two resources. The agent

possessing resources X and Y will be labeled Agentxy. There are also

three smokers. SmokerT already has tobacco but needs paper and matches

in order to emoke, Smokerp has paper but needs tobacco and matches, and

SmokerM similarly has matches but needs tobacco and paper.
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Between the agents and the smokers lies a table. The table is such

that at most one agent can access it at any time, though a smoker may

access the table even if another smoker or agent presently has access to

it. An agent (say AgentTp) will gain control of the table, and will not

relinquish that control until he has placed his two resources upon the

table, one after another. The agents then vie again for control of the

table (each agent has an infinite supply of its resources, so the choice

of agent to go next is made at random). Before any agent can go again,

however, the smoker needing the two resources that have just been put

down by the agent (in this case, SmokerM) must access the table and

clear it off. This methodology is illustrated in Figure 2.

AgentTp SmokerN

0/

/

AgentT matches S--- - - Smokerp

Op I TABtLE" 4

AgentMp SmkerT

Figure 2: Cigarette Smokers

The difficulty with this problem results from one further

restriction, albeit an implicit one. We could arrive at a simple

solution if smokers could determine which agent most recently had
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control of the table. For example, Smoker could wait for Agent to
M TP

finish laying its resources on the table. Instead, the smokers will be

aware only of the resources that are presently displayed on the table,

and not the identity of the agent that placed them there.

Complications arise in the following situation. Assume Agent has
TP

control of the table, he has placed the tobacco upon it, but has yet to

do the same with the paper. Smoker and Smokerp spot the tobacco, but

are unable to determine whether it was deposited by AgentTp or Agent T.

Both of these smokers need the tobacco, and both lay claim to it.

Finally Agent sets the paper on the table. Now the identity of

Agent can be inferred by the smokers, but it may be too late: SmokerM

completes his takeover of the resources by grabbing the paper, while

Smokerp, realizing his initial mistake in claiming the tobacco, must

somehow relinquish that claim. Whatever synchronization mechanism is

used must be sufficiently flexible to allow the forfeiture of claims, or

must allow claims to be delayed until the transaction can be completed

with certainty.

Patil (Pat7l] was the first to describe the cigarette smokers

problem. Using an elaborate proof based upon Petri Nets, Patil claimed

this problem was not solvable using Dijkstra's P and V operations on

semaphores [Dij68a]. In place of P and V, Patil suggested a new, more

powerful operation known as PVmultiple. Parnas [Par75J replied to this

claim by showing that Patil's assumptions concerning the use of P and V

were too strong, and that in fact this synchronization problen is

solvable using just these operations. A variety of solutions to the

cigarette smokers problem and some generalizations have since been
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produced by Habermann [Hab72b] (whose results were later extended by

Devillers and Louchard [DL73]), by Lauer and Campbell [LC751 and by

Reddi [Red77]. An additional solution using B/F operations has been

proposed by Ramsperger [Ram77].

Disk Scheduling

Disk packs are among the most common mass storage devices in use

today. They consist of a collection of flat disks which are joined

through their centers by a spindle which enables them to rotate at high

speed. Each disk has one or two surfaces that are magnetized in order

to record data. Every surface is logically decomposed into a set of

concentric circles known as tracks, and the tracks are further

decomposed into records or sectors. The choice of surface, track and

sector collectively determine the address of a particular unit of

information. If the tracks on the surfaces are consecutively labeled I

through n, then cylinder i consists of all tracks labeled i. Above each

surface is a read/write head which can store or retrieve data from its

respective surface. The heads are joined by an arm, the purpose of

which is to position the heads. Figure 3 outlines the structure and

major components of a disk pack. Given this configuration for disks,

there are still a great number of variables. The answers to

synchronization problems will be very sensitive to the way in which

these variable factors are fixed for a particular system. The following

questions illustrate some of the pertinent concerns.

1) Is the arm stationary, with one head per track, as in a fixed head

disk? Or can the arm be positioned so that one set of heads can visit



Page 28

read/vrice head spindle

record

arm
cylinder

Figure 3: Disk Pack

all the cylinders, as in a moving head disk?

2) Is there just one arm, or could we envision devices with multiple

arms, each of them moving independently from the others? The use of a

single arm physically constrains us to access distinct cylinders in a

mutually exclusive manner.

3) If the arm is positioned at a particular cylinder, can some heads be

reading on one set of tracks while other heads are writing on a

different set of tracks?

4) At what point is the arm committed to accessing a particular cylinder

or record? For example, suppose a head is currently examining record A,

and record B is the next one due to be accessed. While seeking record

B, a request to access record C is received. If record C is encountered

before record B, should the heads temporarily preempt their search for B
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in order to examine C, or should they ignore C f or the moment and

continue on their way to B?

Disks are mechanical devices, and as such are relatively slow.

Because of this, their use can be very expensive in terms of the time

required for data access and transfer. A well thought-out strategy for

utilizing disks can therefore greatly reduce overall processing times.

Five disk scheduling policies were compared and analyzed by Teorey and

Pinkerton [TP721. These five alternatives are listed below in order of

increasing complexity and presumably better performance.

1. First-Come-First-Served (FCFS) Scheduling. This policy is very

similar in nature to the FIFO scheme described under Mutual Exclusion.

Requests to access the disk are serviced in the same order in which they

are received. Lockout is not possible, though FCFS scheduling "...does

not take advantage of positional relationships between I/O requests in

the current queue or of the current cylinder position of the read/write

heads." These heads, which are movable, will travel in a random pattern

seeking the appropriate track. The potential for inefficient use being

made of the disk is therefore increased. I
2. Shortest-Seek-Time-First (SSTF) Scheduling. The request requiring

the shortest seek time is allowed access to the disk first. Seek time

refers to the delay incurred when the read/write heads move from their

present position to the proper cylinder. SSTF scheduling, while more

* efficient than FCFS in terms of number of requests serviced during a

sufficiently long interval, can lead to discrimination against

individual requests. For example, if a stream of requests to nearby
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cylinders is continuously received by the disk scheduler, these requests

will be serviced quickly. However, if requests to distant cylinders are

also enqueued, there may be a long delay before they are serviced.

Carried to an extreme, these latter requests can be locked out.

3. SCAN Scheduling. This policy was developed by Denning [Den67]. The

heads sweep back and forth across the disk surface, changing direction

only at the extreme inside and outside cylinders. The motion of the

heads is halted at any track containing a record to which an access

request has been made, and the motion resumes in the same direction only

after the information transfer has been completed. Among its other

virtues (e.g. ease of implementation, good performance), SCAN does not

permit the type of discrimination that can occur with SSTF.

Unfortunately, lockout is still a possibility, as the following

scenario illustrates. Assume that the scheduler is servicing some

request to a record on a particular cylinder. If a new request is made

to a record on this same cylinder before the original request is

satisfied, the heads will not move and the new request will be the next

one serviced. If new requests continually arrive in this manner, the

heads will never move, and all pending requests to records on cylinders

other than the one currently being scanned will never be granted the

attention of the scheduler. Hoare [Hoa74] has overcome this drawback

through a scheme that minimizes the frequency at which the heads change

direction.

4. N-Step SCAN. Once a set-of disk requests have been completed, a new

set of up to N pending requests (where N might be variable) is selected
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for servicing. Once the members of this set are chosen, the selections

cannot be modified. These requests are then fully serviced before

another such set of inputs is located. Within each set, an optimal

algorithm or near-optimal heuristic is used to determine the ordering of

requests that will yield the fastest completion time. The origin of

this strategy can be traced to the NSCAN scheduling method described by

Frank [Fra69]. It is advantageous in that it preserves the rate of

system throughput while lowering the variance of wait times for

individual disk access requests.

5. Eschenbach. This scheduling policy was developed by Weingarten

[Wei661 for use in message switching systems that are often subject to

heavy loads. Assume there are M sectors on each track and that on each

revolution of the disk, the heads can access some fraction M/E of these

sectors. The heads will begin at the outermost cylinder, where they

will remain for E revolutions so that all sectors on these tracks may be

accessed. The heads then proceed to the next cylinder for E

revolutions, and this process continues until the innermost cylinder is

reached. After servicing this last cylinder, the heads return

immediately to the outermost cylinder and the entire scan of the disk's

surface repeats. This "order E scheme" tends to improve both rotation

and seek times.

Of course, these five scheduling algorithms do not exhaust all the

possibilities. Many other alternatives have been studied, such as the

CSCAN [TP72], FSCAN [CKR72] and MTPT [Fu74 disciplines. The first of

these methods is identical to SCAN, except requests are serviced only
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while the heads are moving from the outside cylinder inward. In the

second method, requests that are made while the heads are sweeping

across the face of the disk are serviced on the following sweep. The

name "MTPT" is suggestive of its function: it minimizes the total

processing time associated with the disk requests.

Alarm Clock

The alarm clock problem was described by Hoare [Hoa74] as a simple

example of a scheduled wait. Underlying this problem is a resource

which serves as the system clock. There are two operations which act

upon this clock. The first operation is tick, whose execution changes

the state of the clock to reflect the passage of one unit of time. The

other operation is wakeme(k). When a process encounters this

instruction, its execution is suspended until k tick operations have

subsequently been issued by other (presumably non-sleeping) processes.

In addition to the monitor-based solution to this problem presented by

Hoare, a solution that uses distributed processes has been developed by

Brinch Hansen [BH78].

Deadlock Detection

Habermann [Hab69] was the first to study the problems associated

with deadlock. Intuitively, deadlock arises when process I cannot

proceed until it obtains some resource currently held by process 2,

process 2 cannot proceed until it obtains some resource currently held

by process 3, and so on, with process n unable to proceed until it
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obtains some resource currently held by process 1. The complexity of

deadlock avoidance, detection and recovery can be very great, making

these potentially costly resource allocation tasks. Questions relating

to deadlock come in so many variations, and such a large number of

papers have been written on the subject that we could not possibly

survey the entire area here. However, Coffman et al. [CES71] and Holt

(Hol721 present accurate descriptions of the fundamental characteristics

of deadlock.

Garbage Collection

The problem of garbage collection goes back nearly to the beginning

of automatic computing. Simply stated, garbage collection involves the

location of resources that have been used but are no longer needed by

the system, and the return of these resources to a state in which they

may be reutilized. Only recently have the added difficulties of garbage

collection in a parallel system been analyzed. See [Ste75], [Gri77],

[KuS77] and [DLMSS78], along with their references, for a description of

some of these problems.

Firing Squad Synchronization

The firing squad synchronization problem is unique among all the

problems we have examined thus far. Whereas the other problems are

motivated by asynchronous systems, this problem originates from the

theory of self-reproducing automata and synchronous logical devices. In

addition, it predates the other problems by several years. Moore
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[Moo64I gives the first written description of the firing squad problem,

and he attributes its origin to some 1957 work of John Myhill. Since

then, the problem has been modified, generalized, studied and solved in

numerous contexts. Relevant papers include [Wak66], [Ba..671, [ML68],

[Var69], [VMP70], [Her72J, [RFH72], [HLRW74], [Shi74], [Gra75J, [Rom76J,

[LMS77I, [Vol77I, [Kob77], [Kob78] and [Gol78].

The problem centers around an abstract model of a firing squad.

Each soldier is represented by a finite state machine, and the

state-to-state transitions of each machine is governed by the state of

that machine along with the states of some subset of the other machines.

The states of the machines are designated either "quiescent" or

"firing." Initially all of the machines are in a quiescent state, and

one machine is designated the "general." The general will give the

command to fire (he does so by changing states) and thereby initiates a

sequence of state transformations among all the machines. The object is

for all the machines to reach a firing state for the first time within

some small time interval. To make the problem non-trivial, this time

interval must be less than the maximum time it takes for any two

machines to communicate with each other. The trick is to design the

state set and transition rules of the individual machines in such a way

that the firing squad correctly performs its function no matter how many

machines it is comprised of; i.e. the size of the state sets must be

independent of the number of soldiers.

Typically, the machines are arranged in a linear array with the

general stationed at one end of the array. The transition rules of a

soldier depend upon the state of that soldier and the states of the two
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adjacent soldiers (or the single adjacent soldier in the case of the

general and the soldier at the opposite extreme of the line). The time

interval in which all the soldier must fire has zero length. In other

words, the machines fire simultaneously. This scheme is illustrated in

figure 4.

General gives comand

to fire

General ElI 0I I I

Figure 4: Soldier 1

Firing Squad
Synchronization Soldier 2 El. F- U El 0

Soldier n-I J El El l

Soldiern F1 El El El
i i i INI time
0 1 2 t-1 t

all machines all machines

in quiescent state in firing state

CONCLUS IONS

We have examined many of the synchronization problems that have

been proposed by researchers to date. Parallel computers today are

still relatively rare. The concurrent architectures that do exist today

tend to be primarily of the SIND (Single Instruction Stream - Multiple

Data Stream), or vector variety, which do not suffer the pitfalls (nor

offer the benefits) of asynchronism and synchronization. Machines that
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do support truly concurrent processes tend to display this concurrency

largely among specialized devices, such as the communication protocol

that serves as an interface between central processing units and data

channels. Thus it is somewhat difficult to guage whether or not the

problems presented in this paper accurately reflect some of the

difficulties one in likely to encounter when implementing an actual

system. In addition to questions of synchronizing concurrent processes,

there also remain very important issues dealing with language features

and computational efficiency that remain largely untouched.

As parallel computers become more of a reality, so too will

synchronization problems become more realistic. For example, Fischer et

al. [FLBB79] and Rivest and Pratt [RP761 have already made preliminary

investigations of some variants of the mutual exclusion problem when the

processes are subject to failure. Similarly, Russell and Brendt [RB75]

and Wurges (Wur77] have examined techniques for coping with errors in

producer/consumer problems. Our understanding of the underlying nature

of concurrency will hopefully grow, and we will be able to expand our

set of synchronization problems that can be c~gorously analyzed and

solved to include those exhibiting greater complexity.
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